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Abstract. Recently, simulated annealing methods have proven to be a valuable tool for global 
optimization. We propose a new stochastic method for locating the global optimum of a function. The 
proposed method begins with the subjective specification of a probing distribution. The objective 
function is evaluated at a few points sampled from this distribution, which is then updated using the 
collected information. The updating mechanism is based on the entropy of a move selecting 
distribution and is loosely connected to some notions in statistical thermodynamics. Examples of the 
use of the proposed method are presented. These indicate its superior performance as compared with 
simulated annealing. Preliminary considerations in applying the method to discrete problems are 
discussed. 
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1. Introduct ion 

Stochastic approaches to global optimization have recently received considerable 
at tention in various literatures. Since the pioneering work of Cerny (1985), 
Geman  and Geman (1984), Kirkpatrick et al. (1983), and Pincus (1970), much of 
this at tention has been devoted to the theory and application of simulated 
annealing as an optimization technique. Some useful references are B61isle et al. 

(1990), Pronzato et al. (1984), Rinnooy Kan et al. (1985), and van Laarhoven and 
Aarts (1987). Of special interest to statisticians, Bohachevsky et al. (1986) and 
Haines (1987) have applied annealing to experimental design and Geman and 

Geman  (1984) and Geman and McClure (1985) employed simulated annealing for 
Bayesian image restoration. 

We will describe a new technique for stochastic search for optima. The method 
is related to simulated annealing, especially the "general ized" approach of 
Bohachevsky et al. (1986). The method attempts to incorporate problem specific 
information to direct the search. Preliminary results indicate that the method can 
be quite successful, and in some cases, more efficient than generalized simulated 
annealing. 

Journal of Global Optimization 2: 209-224, 1992. 
(~) 1992 Kluwer Academic Publishers. Printed in the Netherlands. 
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1.1. STOCHASTIC SEARCH FOR OPTIMA 

The problem considered here is as follows: Minimize a function ~b over a "feasible 
region",  35. It is assumed that 35 is a subset of a Euclidean space. 

Stochastic search is typically considered in cases when q~ and/or  35 are "com- 
plex". The character of complexity for such problems can take on various forms 
which render standard differentiation based techniques infeasible. First, ~b may 
not be differentiable and/or  35 may be discrete. Even when such obvious 
impediments do not arise, standard techniques may not be practical for cases in 
which ~b has many local extrema and/or  X is high dimensional. 

In problems of these types, it is typically the case that random searchers are 
more efficient than exhaustive, deterministic searches. For further discussions and 
references the reader is referred to Aarts and Korst (1989) and Ripley (1987), 
Chapter 7. 

A slight over-simplification of stochastic searches is that such methods are 
constructed from two basic inputs: (i) Search Recipe and (ii) Stopping Rule. A 
search recipe is the method by which a sequence of random points or candidates is 
obtained in 35. The stopping rule is the rule which determines how the search is 
stopped and the global optima of ~b is guessed. 

1.2. SIMULATED ANNEALING 

This technique is based on an analogy between the optimization problem and 
statistical physics. Only a brief description of the analogy is given here. First, 
imagine a physical system, for example, a large number of molecules contained in 
a box. Under  thermoequilibrium, i.e., the box has been at a constant tempera- 
ture, T, for a while, the distribution of states of the system is the Gibbs' 
distribution: 

1 -E(state)/KT Pr(state) = ~ e 

where K is Boltzman's constant, E( .  ) is the appropriate energy function, and Z is 
just the normalizer (or "partition function"). Note that Gibbs' distribution favors 
small energy levels. Next, the limiting distribution as T tends to zero is of interest. 
In particular, the limiting distribution concentrates all of its mass on those states 
which yield the (global) minimum energy. (This is the Third Law of Thermo- 
dynamics.) For the optimization problem, ~b is equated with the energy E, points 
in 35 are considered to be "states",  and T is viewed as a control parameter. 

The standard simulated annealing algorithm is described in two basic compo- 
nents. 

Component 1. Search. Generate a sequence of candidates in 35 as follows. Start at 
any point, say x in 35. Using a specified generation distribution, choose a random 
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local perturbation of x, say x*. Note that x* is a random point "near" x. What is 
actually meant by near depends on the structure of ~. Once nearness is 
quantified, say by a parameter, Ar, it is treated as a control parameter. The 
search then chooses to move to x* or remain at x for the next iteration according 
to the move selection distribution described as: 

Accept x* with probability min[1, exp{-/3(to(x*) - t0(x)))]. (1.1) 

In this distribution /3 is a control parameter. Note that x* is accepted if 
to(x*) ~< to(x). If to(x*) > tk(x), x* may be accepted with a probability related to 
the likelihood ratio comparison, under a Gibbs model, of x and x*. Heuristically, 
the possibility of accepting a worse point may discourage the procedure from 
stopping in a local minimum. The search continues in this fashion until it becomes 
trapped at the same point for L consecutive iterations. Of course, L is yet another 
control parameter. 

Component 2: Cooling Schedule. In the above search the parameter fl is thought 
of as the inverse of the temperature in Gibbs' distribution. The search is repeated 
for an increasing sequence of/3 's .  The choice of this sequence is known as the 
cooling schedule. The selection of the cooling schedule as well as the decision of 
when the process is sufficiently cooled requires some problem specific "trial and 
error" (van Laarhoven and Aarts, 1987, review work on semi-automatic 
schedules.) 

1.3. GENERALIZED SIMULATED ANNEALING 

Bohachevsky, Johnson and Stein (1986) (hereafter, BJS) considered a modifica- 
tion of the standard algorithm for continuous ~. The key to their suggestion is to 
modify the move selecting distribution in an attempt to accelerate the conver- 
gence to the minimum. 

Suppose the global minimum value of 4,, say tomin, is known. (There are 
problems in which tomin, but not its location, is known. Also, suppose one wishes 
to find the roots of a function, say f. One could then minimize to =f2 ,  for 
example, with known minimum tomin = 0.) In this case BJS consider the annealing 
algorithm as above but with (1.1) replaced by 

min[1, exp{- /3( to(x*) -  tomi,)~(to(X *) -- to(X))}]. (1.2) 

Here g is an additional control parameter. In examples, BJS use g = -1 .  
For problems in which tomi, is unknown, BJS suggest a simple approach in 

which one begins with an initial estimate of ~bmi .. The estimated value of tomi. is 
then just decreased, in a problem specific fashion, whenever the search encoun- 
ters smaller values. 
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2. A Stochastic Probing Algorithm 

The motivation behind the algorithm presented is essentially Bayesian in nature. 
We suppose the user considers the incorporation of prior information concerning 
the location of the minimum of ~b. This information is used to construct a probing 
distribution on the feasible region. Though this prober plays the role of a prior in 
a Bayesian approach, it is updated via an ad hoc scheme, rather than via Bayes 
Theorem, as the search proceeds. A thorough discussion of Bayesian approach to 
the development of numerical methods of global optimization of continuous 
multimodal functions and functions with "noise" is given in Mockus (1989). In 
this monograph, advantages and disadvantages of Bayesian approach (average 
case analysis), comparing it with more usual minimax approach; some theoretical 
and computational problems of probability related to the Bayesian approach to 
global optimization; and software for global optimization are also discussed. 

2.1. OUTLINE OF THE ALGORITHM 

In the following description we consider the continuous minimization problem 
and assume ~f is a subset of m-dimensional Euclidean space. We begin with the 
construction of a probing distribution, with density p( .  Ix 0, o-0). It is assumed that 
p is a multivariate location-scale density, with location x0, and scale o-0, whose 
support contains ~.  Through the choice of x 0 and ~r 0, p can be chosen to reflect 
the prior information of the user. However, the generation distributions for the 
search are of the same family as p,  so the ability to easily simulate from p is 
essential. 

The search recipe of the algorithm involves the production of a sequence of 
pairs of location-scale parameters (x n, o'n), n/> 1, as follows: 

(1) Generation Step: At stage n(n>~O), generate k independent, identically 
distributed points X n l , . . .  , Xnk from p(- tx~, on), subject to xni E X. Let x~0 = xn 

and x ~ = (xn0 . . . .  , xnk )- 
(2) Move  Selection: x~+ t is chosen according to the following Gibbs-like 

distribution on k + 1 points; 

1 
Pr(xn+ 1 = xm) = -~ e -B(¢''i'~") , i = 0 , . . . ,  k ; (2.1) 

k e-B((o,i,x~) where Z = Zi= 0 . The choice of the functional B is left open for now. 
(3) Prober Scale Reduction: The parameter o-n controls the breadth of the 

search at stage n. Intuitively, ~r should be relatively large for n = 0, but should 
decrease if the search is successful. The basic rule considered here is of the form 

(i) cry+ 1 = cr n if ~b(x,+~) >/~(x,,) 

(ii) o '+ I = r ( t r )  < ~r n if &(x,+~) < th(x,) , 
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where r(. ) is an appropriately chosen scale reducing function. Some choices are 
discussed below. 

Finally, we consider stopping rules as follows: Continue the search until the 
volume of the (1 - a)  x 100% highest probability density region of p ( .  Ix , ,  on) is 
less than e. Both a and e are chosen by the user based on the desired accuracy of 
the final guess (the best point ever seen during the search) at the minimizer. 

To keep the rest of the discussion in perspective, note some of the similarities 
and differences between our algorithm and annealing. First, our search is a 
directed global search which only "localizes" once it is close to the minimum 
(hopefully).  We believe this can offer a potential improvement over annealing in 
that we can achieve very fast convergence if (i) the initial prober  is "on target" or 
(ii) the early search is simply "lucky".  A more important advantage is that the 
method avoids the "cooling schedule" problem of annealing. Of  course, nothing 
comes for free: We must choose a scale reduction function as discussed later. 

2.2. SUGGESTIONS FOR COMPONENTS OF THE ALGORITHM 

2.2.1. Move Selection. We assume, as do BJS initially, that the minimum 4~min is 
known. A useful choice for B( .  ) in (2.1) is 

' (Xni) - -  
B(4~, i, x n) = min(~b(x,i), ~b(x,0)) _ ~bmi" . (2.2) 

This choice is partially motivated by (i) the generalized approach of BJS and (ii) 
some computational experiments. 

2.2.2. Scale Reduction Rule. As mentioned above, the prober  is chosen from a 
convenient location, scale family. To start the search we suggest that o- 0 should be 
relatively large. For example, tr 0 could be chosen so that the ( 1 -  a ) ×  100% 
highest probability density region (HPD)  of p ( .  Ix0, o-0) just covers X. (Of 
course, since we generate sample points from the prober,  it would then be 
possible to generate points outside of X. Such points are simply discarded. It is 
assumed that the simulation costs are negligible compared to costs in evaluating 
th.) The scale reducing function considered here is as follows. (Recall that 
o-,+ 1 =o-,  if (h(xn+l)~> ~b(x,).) The key is to relate o-, with v n where on is the 
volume of the (1 - a )  100% H P D  region of p ( .  I xn, trn). Specifically, 

Reduction Rule. If ~b(x,+~)< f f~(Xn)  , then let O'n+ 1 be that value such that for 
0 <  w, < 1, 

V,+ 1 = w,V ,  . (2.3) 

The choice of w, should ideally allow w, to reflect how close the algorithm is to 
the minimizer. 
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The ad hoc choice for w n considered here is based on the entropy of the current 
move selecting distribution; namely 

k 

Ent(n) = - ~ Pr(x,+l = x,i) log Pr(x,+l = xni) ,  
i=0 

where Pr ( - )  is given in moving selecting distribution, (2.1). In particular, 
consider 

Ent(n) (2.4) 
wn -'- log(k + 1) " 

First, Ent(n) is a measure of the variability of the move selection distribution. 
Since this distribution was tailored to favor small values of q5, a small Ent(n) 
indicates, very roughly, some concentration toward the minimum. (Also, there is 
a phenomenological analogy to thermodynamics in that as the temperature goes 
to zero the entropy of Gibbs' distribution collapses to the logarithm of the 
number of states which yield the minimum energy. If there is only one such state, 
the limiting entropy is then zero. Of course, the analogy is very loose.) 

If ~bmi . is known, we can make use of this information in the choice of w,.  A 
potential concern arises if ~b(xn+1) is small compared to the other k candidates at 
the nth step, but ~b(xn+l) is still much larger than ~bmi n. To avoid the resulting 

* of (2.4). artificial decrease in w,,  we employed the following modification w, 
First, consider the two point distribution on ~b(x,+l) and 4)~, where 

1 e_(,(~,+l)_oml.) Pr*(0(X,+x)) = ~ 

Pr*(qbmin) = 1 - P r * ( 6 ( x , + l ) ) ,  

Z *  = 1 + e -(6(xn+O-4"min) . 

Let Ent* be the entropy of this distribution, and define 

w* = mini1,  

1 

Wn ] (2.5) 
(Ent*/log (2)) ~" 

2.2.3. EUipticaUy Contoured Probers. In order for the algorithm to be 
"efficient", the choice of the prober should generally be made based on flexibility 
as well as computational ease. As a general suggestion, the class of elliptically 
contoured distributions should be very useful. An excellent reference for this 
discussion is Johnson (1987), especially Chapter 6. 

Assume that each x in ~ is a p × 1 vector, Consider probers of the form 

p ( "  [ tz ,  0") = Cp I Or ] - l / 2 g ( ( x  -- /Z) tO ' - l (X - -  / ~ ) ) ,  ( 2 . 6 )  

where c e is a normalizer, /x is a p × l  location vector and cr is a p x p ,  
non-singular scaling matrix. The choice of g(- ) is left open for this discussion. 

Such probers are quite attractive for our purposes. First, simulation from the 
prober is relatively easy; see Johnson (1987), p. 110. Second, such probers permit 
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a very simple rule for updating tr n according to (2.3). The key observation is that 
HPD regions for (2.6) can be expressed in terms of level sets of the quadratic 
form ( x -  ~ ) t o - l ( x -  I~),  whose distribution is independent of /z and ~. In 
particular, suppose o- 0 and v 0 have been specified. For an elliptically contoured 
prober, tr n can be updated according to the reduction rule, (2.3) as follows. 

LEMMA.  I f  0 <<- w n <~ 1 a n d  

On+ 1 = ( W n ) 2 / P O r n  (2.7) 

then On+ 1 ~ W n U  n . 

P r o o f .  The proof follows directly from the above observations and is therefore 
omitted. 

Note,  that (2.7) is not the only update consistent with (2.3). In particular, (2.7) 
maintains the orientation of the prober. 

3. Performance of the Probing Algorithm 

Bohachevsky e t  a l .  (1986) considered three functions on [ -1 ,  1] 2 to study the 
performance of their generalized simulated annealing algorithm. These functions 
arel 

q~l(x ,  y )  = a x  z + b y  2 - c cos(ax) - d cos(yy) + c + d (3.1) 

th2(x , y) = a x  2 + b y  z - c eos(ax) cos(yy) + c (3.2) 

4~3(x, y) = a x  2 + b y  2 - c cos(ax + rY) + c (3.3) 

with a = 2, b = 2, c = 0.3, d = 0.4, a = 3"rr, y = 4"tr. Each of these functions has 
many local minima and a unique global minimum of 0 at (0, 0). The following 
3-dimensional version of tha was also used in the performance comparisons 
discussed below: 

th(x , y ,  z )  = x 2 + 2y 2 + 3z 2 - 0.3 cos(37rx) - 0.4 cos(4~-y) 

- 0.5 cos(5~rz) + 1.2. (3.4) 

A three-dimensional perspective plot of ~b 1 as well as contour plots of ~bl, ~b 2 and 
4'3 can be seen in BJS. 

3.1. AN I M P L E M E N T A T I O N  OF THE STOCHASTIC PROBING A L G O R I T H M  

The stochastic probing method was applied to each of the above functions. In 
each case, the prober used was Gaussian with independent components having 
common scale tr. The scale reduction rule given by (2.5) was employed. The 
initial value of tr was taken to be 0.7 while the stoping rule required this scale to 
reduce by a factor of (0.0001) lip where p is the dimension of the prober. (This is 
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equivalent to reducing the volume of a fixed probability-content HPD region by a 
factor of 0.0001.) 

Figure 1 depicts the progress of a typical instance of the stochastic probing 
algorithm applied to ~b~. The initial guess for the location of the prober was 
(1.0, 1.0) and the probing sample size was k = 2. Panel (a) shows a plot of the 
objective function value at each of the three points (the location of the prober 
marked by 'x' and the two points sampled from it marked by 'o') at each iteration 
of the algorithm. The horizontal axis is labelled by the number of function 
evaluations rather than the iteration number. The panel also shows how o-, the 
scale of the prober, reduces as the search proceeds. The right-hand vertical axis 
marks the scale for or and the solid line connects the plotted values. Panel (b) of 
Figure 1 shows the history of the same probing run as viewed through the distance 
from the optimal point. Figure 2 shows the progress of a typical probing run for 
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Fig. 1. Progress of a typical probing run for function phi-1 in 2 dimensions, x: value at 
current location of  prober; o: value at sampled point. 
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Fig. 2. Progress of  a typical probing run for function phi-1 in 3 dimensions, x: value at 
current location of prober;  o: value at sampled point. 

the three-dimensional version of 4)~ given in (3.4) above. Here the initial location 
of the prober is (1.0, 1.0, 1.0), initial or = 0.7 and the probing sample size is k = 3. 
It should be pointed out that these runs used only the input mentioned above and 
that, unlike annealing, no parameters had to be fine-tuned or empirically de- 
termined. 

3.2. COMPARISON WITH G E N E R A L I Z E D  SIMULATED A N N E A L I N G  

We next describe a comparison of the generalized simulated annealing algorithm 
of BJS and our stochastic probing algorithm as described. Both methods were 
applied 75 times each to the functions in (3.1)-(3.4) above. The performance 
measures used were (i) number of evaluations of the objective function, (ii) 
objective function value, and (iii) distance from the optimal point when the 
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algorithm terminated. The first of these addresses speed and the other two reflect 
the quality of the solution found. 

For each of the above objective functions, the 75 runs included three different 
initial guesses and 25 different seeds for the random number generator. For ~b~, 
~b z, and q53 on the two-dimensional domain [ -1 ,  1] 2, the starting points were: 
(1.0, 1.0), (0.6, 0.45)and (0.6, 0.0). For the 3-dimensional version of ~b 1 the initial 
guesses (1.0, 1.0, 1.0), (0.6, 0.45, 0.25) and (0.6, 0.0, 0.0) were used. The results 
for the four objective functions are presented Figures 3, 4, 5 and 6. To be specific, 
we describe Figure 3 in detail, the others being similar. The figure contains six 
plots arranged in three columns and two rows. The first column shows, in two 
different ways, the comparison using the performance measure (i). Here we note 
the difficulty in counting the number of objective function evaluations for a run of 
the simulated annealing method: parameters such as /3 and Ar (see BJS for 
details) must be determined empirically. This clearly involves a substantial 
number of function evaluations and preliminary computations. In the comparisons 
pictured here, this cost was completely ignored in that the experimentally 
determined best values suggested in BJS were used for each function: Ar = 0.5; 
/3 = 3.5 for ~b I and/3 = 3.0 for ~b:, ~b 3. 

The plot in the top row shows the box,plots for the two algorithms. As noted in 
the plot, only 60 observations out of the possible 75 were used for the simulated 
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annealing box-plot. This was caused by the 15 cases in which the algorithm failed 
to converge to the global minimum. The stopping criteria for the annealing 
algorithm were: (i) ~b <0.0001 or (ii) 35 successive trials fail to produce an 
acceptable move. Finally, the data were truncated at 450 for convenience of 
plotting scale. The number of truncations are noted in the plot. (The actual values 
were: 523 for annealing and 571,663,1255,3481 for probing.) Overall, the com- 
parison favors the stochastic probing algorithm. When one notes the initial costs 
of experimentally determining the annealing constants, the stochastic probing 
algorithm appears to perform substantially better. Further, the number of failures 
of annealing to converge to the minimum is disturbing by comparison. Perhaps we 
should not make too much of this since we are running at only the recommended 
parameters and not allowing annealing to further "cool". It does make one 
wonder how the decision to stop the annealing algorithm in a given problem is to 
be made. 

The plot in the second row is a scatter diagram of the 75 runs matched by initial 
guess and random number seed. Here matching by seeds is only for convenience. 
Lack of convergence of either algorithm is indicated by special symbols as noted 
at the bottom of the Figure. The 45 ° line is drawn for ease in comparing the two 
methods; points above it favor stochastic probing• 
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Plots in columns 2 and 3 of Figure 3 use performance measures (ii) and (iii) as 
noted in the column titles; in other respects these plots were made in the same 
manner as those in column 1. The entire Figure 3 provides a visual comparison of 
the two algorithms applied to ~b t. All three performance measures indicate that 
stochastic probing outperformed simulated annealing. 

Figure 4 shows the comparison using the objective function ~b 2. Again the 
conclusion is the same as with ~b 1. Figure 5 shows that among the objective 
functions used, ~b 3 brings the performance of the two methods closer together 
than any other. The comparison using the 3-dimensional objective function (3.4) 
is contained in Figure 6. Overall, the stochastic probing algorithm appears to 
outperform the generalized simulated annealing algorithm even when the latter is 
"pre-cooled". It should also be noted that we did not allow any of the probing 
runs to rely on one of the primary goals of stochastic probing; namely, the 
incorporation of prior information. In particular, all probing runs were initiated at 
poor initial choices for the location of the minimum. At least in these test cases, 
stochastic probing displayed a reasonable degree of robustness with respect to 
poor initialization. 

3.3. VARIATION FROM RUN-TO-RUN 

There is an appreciable variation in the number of function evaluations needed to 
reach the global minimum. This is apparent in the box-plots of Figures 3-6. To 

(figure shows 18 out of 25 that converged in tess than 80 evaluations) 
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Fig. 7. Samples of probing runs, phi-1 in 2 dimensions, k = 2, initial guess = (1, 1). 
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Fig. 8. Samples of probing runs, phi-1 in 2 dimensions, k = 2, initial guess = (1, 1). 

visually display the run-to-run variation in the progress toward the global 
minimum, we plotted 25 such runs for &l with the initial prober location 
(1.0, 1.0). (These are 25 of the 75 runs of Figure 3.) For reasons of good plotting 
scale and visual clarity, these runs are pictured in two figures: Figure 7 contains 
those runs that took less than 80 evaluations, Figure 8 contains the rest. It is 
interesting to note how the function value fluctuates while maintaining a down- 
ward trend. Many of the quick converges appear to involve a sudden drop in the 
function value. These are chance occurrences which the global approach of the 
stochastic probing method seems to exploit better than the local search approach 
of the simulated annealing method. The stochastic probing algorithm as im- 
plemented here performs reasonably well in recognizing these situations and 
reducing the scale of the prober accordingly. There are, of course, pitfalls that 
sometimes cannot be avoided: sudden drop to a local minimum is an example. 
Some limited experience with other objective functions suggests that restarting a 
search is sometimes helpful when a particular run appears to wander aimlessly 
with a reasonably small value for the scale of the prober. Parallel implementations 
could prove quite useful in this regard, 

4.  D i s c u s s i o n  

Our goal in this paper was to describe the "bare bones" of our probing algorithm. 
Encouraged by what we perceive to be the positive results of Section 3, we plan to 
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pursue a number of theoretical and computational issues related to probing, as 
well as its applications to large scale problems. 

Many of the general issues to be considered concern the compromise between 
generality of the probing algorithm and the modification of the method in 
problem specific directions. For example, an ad hoc updating procedure of BJS 
for estimating the unknown value of ~bmi n could be improved upon, perhaps by a 
Bayesian learning model, in some cases. Another area for refinements of the 
algorithm is the class of discrete optimization problems such as the Traveling 
Salesman Problem; see Aarts and Korst (1989). We are confident that some 
success is possible in such cases. Finally, as indicated at the end of Section 3, 
parallel implementations of probing may be desirable. We are developing parallel 
and "vectorized" versions of the probing algorithm. 

In view of the spirit of the previous paragraph, some readers may develop a 
negative impression of probing in relation to annealing. Indeed, some may argue 
that annealing is a general, easily implemented procedure whereas probing is too 
problem specific for general use. Without wishing to detract from annealing, we 
do suggest the following points. First, annealing is not really a completely 
automatic procedure. The many control parameters used in annealing as well as 
the problem of its cooling schedule force substantial computation time for a 
successful outcome. Second, probing can be implemented with very little user 
input in the annealing style; that is, by running several probes with different 
probing parameters. In fact, an appealing general procedure, easily implemented 
based on this paper, is an annealing-prober algorithm achieved by simply 
introducing a temperature parameter in (2.2) and cooling as in annealing. Finally, 
the potential for problem specific tailoring, including the use of prior information 
when available, of the probing algorithm should be perceived as a positive 
characteristic. 
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